BHARTIYA INSTITUTE OF ENGINEERING & TECHNOLOGY, SIKAR

Department of Civil Engineering

Earthquake Resistant Construction & Design

- **Q.1** Describe the plate tectonics theory of earthquake occurrence. Name the six major tectonic plates.
- Q.2 Differentiate Earthquake Magnitude and Earthquake intensity.
- **Q.3** Describe different types of Rock Faults.
- Q.4 What is the use of modern Seismograph? Describe it's work methodology.
- Q.5 Explain various Seismic waves.
- Q.6 What is Liquefaction? Explain its types and effects.
- **Q.7** Differentiate between following: (Any two)
 - a) Shallow earthquake & Deep earthquake
 - b) P-waves & S-wave
 - c) Intra plate & Inter plate earthquake.
- **Q.8** A five storeyed special RC moment resisting framed building is situated in Shimla on hard soil. The dimension of building is 30 m x 20 m and height of each floor is 3.5 m.
- Q.9 Calculate base shear and distribution of forces on each floor. If

Weight of slab = 2 kN/m^2

=	180 kN
=	120 kN
=	250 kN
	= = =

Weight of terrace floor is 2000 kN. Assume live load 3 kN/m².

- **Q.10** "Regular and symmetrical plan & elevation of a building are prefered for earthquake resistant construction" why? Explain in detail.
- Q.11 Describe the importance of following in RC Construction:
 - a) Weak beam and strong column analogy
 - b) Ductile Detailing
 - c) Soft Storey
 - d) Shear walls
 - e) Stiffness irregularity
- **Q.12** With the help of neat schematic diagrams describe the typical seismic behaviour of unreinforced masonry buildings.
- Q.13 Short notes:
 - a) Static and dynamic analysis
 - b) P-waves and S-waves
 - a) Seismograph
 - b) Seismogram
 - c) Base isolation
 - d) In plane failure
 - e) Out of plane failure